
Inverse Problems, Design and Optimization Symposium
Rio de Janeiro, Brazil, 2004

IDENTIFICATION OF REYNOLDS NUMBER
USING AUTOMATIC DIFFERENTIATION

Yuya Takahashi
Department of Civil Engineering

Chuo University
Bunkyo-ku, Tokyo, Kasuga

u-ya@kc.chuo-u.ac.jp

Mutsuto Kawahara
Department of Civil Engineering

Chuo University
Bunkyo-ku, Tokyo, Kasuga
kawa@civil.chuo-u.ac.jp

ABSTRACT

The progress of computer and numerical
technique in recent years allows us not only
complex numerical simulation but also resolution
of inverse problems. It is important to pursue
higher and higher quality of gradient computation
(it is called sensitivity analysis) in inverse
problem and this is the most bone-crushing point.
In this study, the authors will propose the forward
mode automatic differentiation as a new approach
to the parameter identification problems. Forward
mode automatic differentiation computes the
partial derivatives according to the differentiation
rules of a composite function whenever basic
operation is performed.

INTRODUCTION

The Reynolds number is named after Osborne
Reynolds (1842-1912) who conducted an
experimental study to see how and when laminar
and turbulent flows occur through a pipe. The
Reynolds number is a dimensionless parameter
and is defined as

µ
ρUL

=Re (1)

where ρ is fluid density, µ is viscosity
coefficient, U is characteristic velocity and L is
characteristic length scale. The Reynolds number
is important in analyzing any type of flow when
there is substantial velocity gradient. It indicates
the relative significance of the viscous effect
compared to the inertia effect.

 In this paper, the authors will show the
Reynolds number identification using forward
mode automatic differentiation. Derivatives of
functions can be computed exactly not only by
hand but also by computers. The differentiation
rules are defined for each operation in
computation. Thus if a function is described by its

computer implementation, it can be differentiated
exactly and automatically by overloading
operators. This technique is called automatic
differentiation. Some packages for AD are
already available[1], [2].

PARAMETER IDENTIFICATION

Inverse problems such as parameter
identification finally arrive at minimization
problem of performance function J using optimal
control theory. The performance function J is
defined by the square sum of residual between
computed value and observed data, which can be
written as follows:

∫∫
Ω

Ω−−= dtdJ T

T

)()(
2
1(Re) uuuu (2)

T
nuuu),,,(21 L=u (3)

T
nuuu *),*,*,(* 21 L=u (4)

where u are computed value and u* are observed
data. To find u so as to minimize performance
function J, gradient methods are very efficient.
The Sakawa-Shindo method [7] is one of the
minimization techniques. In this method, the
modified performance function K is introduced
adding penalty term to the performance function.
The modified performance function is expressed
as follows:

dtdW

JK

lllll

T

ll

Ω−−+

=

∫∫
Ω

++)Re(Re)Re(Re
2
1 11

 (5)

where l is iteration number for minimization, Wl
is the weighting constant, which is defined
arbitrary. In this study, weighting constant is 50.
Re is renewed by the following equation:

Inverse Problems, Design and Optimization Symposium
Rio de Janeiro, Brazil, 2004

lll WJ /

Re
ReRe 1

∂
∂

−=+ (6)

which can be obtained from stationary condition
of modified performance function

0Re/ =∂∂K . Here we have to compute partial
derivative of performance function J with
respective to Reynolds number. In this case,
performance function is described by finite
element equations and analytic computation of
partial derivative is a formidable task.

STATE EQUATIONS

In this study, Navier-Stokes equations of
incompressible flow are employed as state
equations which are expressed as follows;

fuuuuu
=∇+∇⋅∇−∇+∇⋅+

∂
∂))((Tp

t
ν in Ω

 (7)
0=⋅∇ u in Ω (8)

where ν is the inverse of Reynolds number. This
inverse of Reynolds number will be identified in
this research using forward mode automatic
differentiation according to optimal control theory.
The initial condition is given as follows;

00)(uu =t (9)

Boundary condition is divided into Dirichlet and
Neumann boundary condition which are
expressed as follows:

uu ˆ= on 1Γ (10)

tnuuδ ˆ})({ =⋅∇+∇+− Tp ν on 2Γ (11)

DISCRETIZATION

Temporal Discretization

Implicit solution, which can make large
temporal space and superior in stability, is applied
to temporal discretization. A Crank-Nicolson
method is applied to momentum equations and
continuity equation is treated completely implicit
as follows:

12

11
++

+

∇+∇⋅+
∆
− nn

nn

p
t

uuuu

fuu =∇+∇⋅∇−
++

})({ 2
1

2
1

Tnn
ν (12)

01 =⋅∇ +nu (13)

where

2

1
2
1 nn

n uuu +
=

+
+

 (14)

)3(
2
1 1−−= nn uuu (15)

Fractional Step Method and Spatial
Discretization

The Navier-Stokes equation can be solved by
the fractional step method, by which flow and
pressure fields are separated by deriving the
pressure Poisson equation from the momentum
and continuity equations. The pressure Poisson
equation is derived introducing an intermediate
velocity, which may not satisfy the continuity
equation. The Galerkin formulation is used in
space.

nn
nn

p
t

∇+∇⋅+
∆
− +

+
2
11

~~
uuuu

fuu =∇+∇⋅∇−
++

})({ 2
1

2
1

Tnn
ν (16)

112 ~)(++ ⋅∇=−∇∆ nnn ppt u (17)

)()~(
2
1~

111
11

nnnn
nn

pp
t

−∇+−∇⋅+
∆
− +++

++

uuuuu

0))~(~())({(
2
1 11 =∇+∇−∇+∇⋅∇− ++ nTnT uuuuν

 (18)

The mixed interpolation is applied to the spatial
discretization. A bubble element adding a bubble
function to a bilinear element is employed as an
interpolation for the flow field. A linear element
is employed as an interpolation for the pressure
field.

 Velocity Pressure
Fig. 1 Mixed interpolation

Inverse Problems, Design and Optimization Symposium
Rio de Janeiro, Brazil, 2004

Stabilized Bubble Function
The stabilized bubble function method is

developed by J. Matsumoto et al.[9] In this
method, the criteria for the steady problem is used,
in which the discretized form derived from the
bubble element is equivalent to those from the
SUPG in case each shape of element. Thus, the
stabilization parameter eBτ of the SUPG method
is used. In the bubble element for the steady
problem, the magnitude of the streamline
stabilization term for a bubble function is
expressed by the stabilization parameter eBτ
defined as:

∫
∫
Ω

Ω

Ω∇′+

Ω
=

e

e

ee

e

e
Vd

d
2

2

)()(

}{

φνν

φ
τ (19)

where Ve is the element volume, eφ is the bubble
function defined on each element.

DERIVATIVE COMPUTATION

Forward Mode

Forward mode automatic differentiation can
compute partial derivatives automatically without
constructing computational graph. Therefore, less
computational storage is required comparing with
reverse mode automatic differentiation. It
computes partial derivatives from input variables
to output variables.

Algorithms are made from unary operations
(including mathematical functions) and binary
operations. Partial derivatives of the basic
operations are known.

When we want to know partial derivatives of f
with respect to)1(nixi ≤≤ . We make temporal
variable S(v) for each intermediate variable v.
First of all initialize the temporary variables
choosing arbitrary independent variable jx ;

≠
=

=
)(0
)(1

)(
ji
ji

xS i (20)

Thus the gradient of the k-th instruction kv can be
obtained from the process shown below:

For),(βαψ vvv kk =

β
β

α
α

ψψ
v

vS
v

vSvS kk
k ∂

∂
+

∂
∂

←)()()((21)

where αv and βv are input variables, intermediate
variables or constants, kψ is basic operation (in
this case, this is binary operation).

Finally, the computation of (21) for the last
instruction kv will provide us with the partial
derivative of f with respective to jx .

Implementation
Implementation of forward mode automatic
differentiation is available from overloading
operators.

,--}nary),unary),-(u(/,,*,,{arithmetc +++−+=ψ (22)
},,,,!,{relational >=<=><====ψ (23)

}log,cos,{sin,math L=ψ (24)

(22) is the set of arithmetic operators, (23) is the
set of relational operators, and (24) is the set of
mathematical functions defined in C++. These
operators will be overloaded partial derivatives of
elementary operations. New class for forward
mode automatic differentiation will be defined as
list 1.

List 1: Forward mode automatic differentiation class
class fdouble {

protected:
 double val;
 double *d_val;
...

public:
...

}

As shown in list 1, this class has two data; the
first one is the value val, the second one is the
vector d_val of partial derivatives. The size of
vector will be as same number as independent
variables. To access to the value and the i-th
partial derivatives, the member function val() and
dx(int i) are used respectively. Operator
overloading for multiplication is shown in list 2.

Inverse Problems, Design and Optimization Symposium
Rio de Janeiro, Brazil, 2004

List 2: Operator overloading for multiplication
operator*(const fdouble &x, const fdouble &y) {
//a temporary array is created here
 fdouble tmp(x.size());
 for(int i = 0; i < tmp.size(); i++) //loop
 tmp.dx(i) = x.dx(i) * y.val() + x.val() * y.dx(i);
 tmp.val() = x.val() * y.val();
 return tmp;
}

NUMERICAL EXAMPLE

As numerical examples, identification of
Reynolds numbers in cavity flow are performed.
Observing flow velocity on 4 points of nodes,
Reynolds number is identified using forward
mode automatic differentiation. As the observed
data, computed results of cavity flow are used.
Finite element mesh and observation points are
shown in Fig. 2. The finite element mesh contains
1089 nodes and 2048 elements.

: Observation points

Fig. 2 Finite element mesh

 The performance function is written as
follows,

∫∫
Ω

Ω−−= dtdJ T

T

)()(
2
1(Re) uuuu (25)

where u is computed value and u* is observed
data. The problem is to find the Reynolds number
so as to minimize the performance function eq.
(25). We employ FADBAD 2.0[1] for automatic
differentiation class library, which is a C++

program package for the forward and backward
automatic differentiation.

 The minimization iteration is computed
shown in fig. 3

Fig. 3 Minimization algorithm

Case 1 (Re=1.0)

Observed velocity is shown in fig. 4. t∆ is set
at 0.01 and total time step is 5. Initial guesses of
inverse of Re number are set at 0.8 (case 1(1))
and 1.2 (case 1(2)).

Fig. 4 Observed velocity (Re=1.0)

In both cases 1(1) and 1(2), performance
function is converged to zero and target Reynolds
number can be obtained as shown in figs. 5-8. In
fig. 6, inverse of Reynolds number is converged
from initial guess, 0.8, to 1.0 and also in fig. 8, it

Inverse Problems, Design and Optimization Symposium
Rio de Janeiro, Brazil, 2004

is converged from initial guess, 1.2. It can be said
that it is independent from initial guesses.

Fig. 5 Performance function (case 1(1))

Fig. 6 Convergence of 1/Re (case 1(1))

Fig. 7 Performance function (case 1(2))

Fig. 8 Convergence of 1/Re (case 1(2))

Case 2 (Re=400)
Observed velocity is shown in fig. 9. t∆ is set

at 0.01 and total time step is 100. Initial guess of
Reynolds number is set at 200(1/Re = 0.005).

Fig. 9 Observed velocity (Re=400)

Fig. 10 Performance function (case 2)

<ITERATIONS>

<ITERATIONS>

<ITERATIONS>

<ITERATIONS>

<1/R
e>

<1/R
e>

<PER
FO

R
M

A
N

C
E>

<PER
FO

R
M

A
N

C
E>

<PER
FO

R
M

A
N

C
E>

<ITERATIONS>

Inverse Problems, Design and Optimization Symposium
Rio de Janeiro, Brazil, 2004

Fig. 11 Convergence of 1/Re (case 2)

The performance function is converged to
zero as shown in fig. 10, which means that the
residual between computed velocity and observed
data is zero and the Reynolds number is identified
as plotted in fig. 11.

As the results, the Reynolds number
converged at correct values in both cases.

CONCLUSIONS

The main purpose of this study is to
investigate efficiency of automatic differentiation
for identification problems, using Navier-Stokes
equations as the flow model. It can be said from
the numerical example that sensitivity analysis is
carried out without any implementation or
discretization because sensitivity is automatically
obtained from the AD. Thus development of
applications for inverse problems can be
significantly simplified.

In addition to that the sensitivity of the
implicit system is also computed correctly using
the AD. The advantages of automatic
differentiation are that we need not to discretize
adjoint systems, which will be very complex, and
that we can concentrate on solving flow fields.

However the CPU time for the AD is much
longer than for the adjoint approach because the
AD requires N times loop on every operation as
shown in list 2 if there are N indepen dent
variables. But the hand working time for adjoint
approach cannot be ignored. And when the
problem is changed, adjoint system has to be re-
built and implemented. On the other hand,
required sensitivity can be easily obtained using
the AD by just changing the declaration for
independent variables in program.

REFERENCES

1. Claus Bendtsen, Ole Stauning, FADBAD, a
flexible C++ package for automatic
differentiation, TECHNICAL REPORT IMM-
REP-1996-17, J. No. 1996-x5-94 August 15, 1996
OS

2. Andreas Griewank, David Juedes, Hristo
Mitev, Jean Utke, Olaf Vogel and Andrea
Walther, ADOL-C: A Package for the Automatic
Differentiation of Algorithms Written in C/C++,
ACMTOMS, vol. 22(2), June 1996, pp. 131-167,
Algor. 755.

3. Masao IRI, Automatic Differentiation in
Sensitivity Analysis and Optimization –
Computational complexity, guaranteed interval of
variation and the role of adjoint systems, The 44th
Nat. Cong. Of Theoretical & Applied Mechanics,
1995

4. Olivier Pironneau, Nicolas Dicesare,
CONSISTENT APPROXIMATIONS,
AUTOMATIC DIFFERENTIATION AND
DOMAIN DECOMPOSITION FOR OPTIMAL
SHAPE DESIGHN, GAKUTO International
Series, Mathematical Sciences and Applications
Vol. 16 (2001), Computational Methods for
Control Application, pp. 167-178

5. Pierre Aubert, Nicolas Di Césaré, Olivier
Pironneau, Automatic Differentiation in C++
using Expression templates and Application to a
Flow Problem, Computing and Visualization in
Sciences, 2000

6. Maruoka A., Kawahara M., Anju A., A
Fractional Step Finite Element Analysis of
Incompressible Navier-Stokes Equation, Proc. Of
the 5th Int. Symp. on Computational Fluid
Dynamics, Vol I pp. 19-26, Sendai 1993

7. Y. Sakawa Y. Shindo, On global
comvergence of an algorithm for optimal control,
Transactions on automatic control, IEEE, AC-
25(6), pp.1149-1153, 1980

8. A. Maruoka, M. Marin and M. Kawahara,
Optimal control in Navier Stokes equations,
IJCFD, 9, pp. 313-322

9. J. Matsumoto and M. Kawahara, Shape
Identification for Fluid-Structure Interaction
Problem Using Improved Bubble Element, IJCFD,
vol. 15, pp. 33-45, 2001

<1/R
e>

<ITERATIONS>

