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ABSTRACT 

The progress of computer and numerical 
technique in recent years allows us not only 
complex numerical simulation but also resolution 
of inverse problems. It is important to pursue 
higher and higher quality of gradient computation 
(it is called sensitivity analysis) in inverse 
problem and this is the most bone-crushing point. 
In this study, the authors will propose the forward 
mode automatic differentiation as a new approach 
to the parameter identification problems. Forward 
mode automatic differentiation computes the 
partial derivatives according to the differentiation 
rules of a composite function whenever basic 
operation is performed. 

 
INTRODUCTION 

The Reynolds number is named after Osborne 
Reynolds (1842-1912) who conducted an 
experimental study to see how and when laminar 
and turbulent flows occur through a pipe. The 
Reynolds number is a dimensionless parameter 
and is defined as 
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where ρ  is fluid density, µ  is viscosity 
coefficient, U is characteristic velocity and L is 
characteristic length scale. The Reynolds number 
is important in analyzing any type of flow when 
there is substantial velocity gradient. It indicates 
the relative significance of the viscous effect 
compared to the inertia effect.  

 In this paper, the authors will show the 
Reynolds number identification using forward 
mode automatic differentiation. Derivatives of 
functions can be computed exactly not only by 
hand but also by computers. The differentiation 
rules are defined for each operation in 
computation. Thus if a function is described by its 

computer implementation, it can be differentiated 
exactly and automatically by overloading 
operators. This technique is called automatic 
differentiation. Some packages for AD are 
already available[1], [2]. 
 
PARAMETER IDENTIFICATION 

Inverse problems such as parameter 
identification finally arrive at minimization 
problem of performance function J using optimal 
control theory. The performance function J is 
defined by the square sum of residual between 
computed value and observed data, which can be 
written as follows: 
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where u are computed value and u* are observed 
data. To find u so as to minimize performance 
function J, gradient methods are very efficient. 
The Sakawa-Shindo method [7] is one of the 
minimization techniques. In this method, the 
modified performance function K is introduced 
adding penalty term to the performance function. 
The modified performance function is expressed 
as follows: 
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where l is iteration number for minimization, Wl 
is the weighting constant, which is defined 
arbitrary. In this study, weighting constant is 50. 
Re is renewed by the following equation: 
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which can be obtained from stationary condition 
of modified performance function 

0Re/ =∂∂K . Here we have to compute partial 
derivative of performance function J with 
respective to Reynolds number. In this case, 
performance function is described by finite 
element equations and analytic computation of 
partial derivative is a formidable task. 
 
STATE EQUATIONS 

In this study, Navier-Stokes equations of 
incompressible flow are employed as state 
equations which are expressed as follows; 
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where ν  is the inverse of Reynolds number. This 
inverse of Reynolds number will be identified in 
this research using forward mode automatic 
differentiation according to optimal control theory. 
The initial condition is given as follows; 
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Boundary condition is divided into Dirichlet and 
Neumann boundary condition which are 
expressed as follows: 
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DISCRETIZATION 
 
Temporal Discretization 

Implicit solution, which can make large 
temporal space and superior in stability, is applied 
to temporal discretization. A Crank-Nicolson 
method is applied to momentum equations and 
continuity equation is treated completely implicit 
as follows: 
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Fractional Step Method and Spatial 
Discretization 

The Navier-Stokes equation can be solved by 
the fractional step method, by which flow and 
pressure fields are separated by deriving the 
pressure Poisson equation from the momentum 
and continuity equations. The pressure Poisson 
equation is derived introducing an intermediate 
velocity, which may not satisfy the continuity 
equation. The Galerkin formulation is used in 
space. 
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The mixed interpolation is applied to the spatial 
discretization. A bubble element adding a bubble 
function to a bilinear element is employed as an 
interpolation for the flow field. A linear element 
is employed as an interpolation for the pressure 
field. 
 
 
 

         Velocity                                             Pressure 
Fig. 1 Mixed interpolation 
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Stabilized Bubble Function 
The stabilized bubble function method is 

developed by J. Matsumoto et al.[9] In this 
method, the criteria for the steady problem is used, 
in which the discretized form derived from the 
bubble element is equivalent to those from the 
SUPG in case each shape of element. Thus, the 
stabilization parameter eBτ  of the SUPG method 
is used. In the bubble element for the steady 
problem, the magnitude of the streamline 
stabilization term for a bubble function is 
expressed by the stabilization parameter eBτ  
defined as: 
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where Ve is the element volume, eφ is the bubble 
function defined on each element. 
 
DERIVATIVE COMPUTATION 
 
Forward Mode 

Forward mode automatic differentiation can 
compute partial derivatives automatically without 
constructing computational graph. Therefore, less 
computational storage is required comparing with 
reverse mode automatic differentiation. It 
computes partial derivatives from input variables 
to output variables. 

Algorithms are made from unary operations 
(including mathematical functions) and binary 
operations. Partial derivatives of the basic 
operations are known. 

When we want to know partial derivatives of f 
with respect to )1( nixi ≤≤ . We make temporal 
variable S(v) for each intermediate variable v. 
First of all initialize the temporary variables 
choosing arbitrary independent variable jx ; 
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Thus the gradient of the k-th instruction kv  can be 
obtained from the process shown below: 
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where αv  and βv  are input variables, intermediate 
variables or constants, kψ  is basic operation (in 
this case, this is binary operation). 
 
Finally, the computation of (21) for the last 
instruction kv  will provide us with the partial 
derivative of f with respective to jx . 
 
Implementation 
Implementation of forward mode automatic 
differentiation is available from overloading 
operators. 
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(22) is the set of arithmetic operators, (23) is the 
set of relational operators, and (24) is the set of 
mathematical functions defined in C++. These 
operators will be overloaded partial derivatives of 
elementary operations. New class for forward 
mode automatic differentiation will be defined as 
list 1. 
 
 

List 1: Forward mode automatic differentiation class 
class fdouble { 

protected: 
 double val; 
 double *d_val; 
... 

public: 
... 

} 
 
 
As shown in list 1, this class has two data; the 
first one is the value val, the second one is the 
vector d_val of partial derivatives. The size of 
vector will be as same number as independent 
variables. To access to the value and the i-th 
partial derivatives, the member function val() and 
dx(int i) are used respectively. Operator 
overloading for multiplication is shown in list 2. 
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List 2: Operator overloading for multiplication 
operator*(const fdouble &x, const fdouble &y) { 
//a temporary array is created here 
     fdouble tmp(x.size()); 
     for(int i = 0; i < tmp.size(); i++) //loop 
          tmp.dx(i) = x.dx(i) * y.val() + x.val() * y.dx(i); 
     tmp.val() = x.val() * y.val(); 
     return tmp; 
} 

 
 
NUMERICAL EXAMPLE 

As numerical examples, identification of 
Reynolds numbers in cavity flow are performed. 
Observing flow velocity on 4 points of nodes, 
Reynolds number is identified using forward 
mode automatic differentiation. As the observed 
data, computed results of cavity flow are used. 
Finite element mesh and observation points are 
shown in Fig. 2. The finite element mesh contains 
1089 nodes and 2048 elements. 
 
 

 
: Observation points 

Fig. 2 Finite element mesh 

 
 

 The performance function is written as 
follows, 
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where u is computed value and  u* is observed 
data. The problem is to find the Reynolds number 
so as to minimize the performance function eq. 
(25). We employ FADBAD 2.0[1] for automatic 
differentiation class library, which is a C++ 

program package for the forward and backward 
automatic differentiation. 

 The minimization iteration is computed 
shown in fig. 3 
 
 

 
Fig. 3 Minimization algorithm 

 
 
Case 1 (Re=1.0) 

Observed velocity is shown in fig. 4. t∆  is set 
at 0.01 and total time step is 5. Initial guesses of 
inverse of Re number are set at 0.8 (case 1(1)) 
and 1.2 (case 1(2)).  
 
 

 
Fig. 4 Observed velocity (Re=1.0) 

 
 

In both cases 1(1) and 1(2), performance 
function is converged to zero and target Reynolds 
number can be obtained as shown in figs. 5-8. In 
fig. 6, inverse of Reynolds number is converged 
from initial guess, 0.8, to 1.0 and also in fig. 8, it 
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is converged from initial guess, 1.2. It can be said 
that it is independent from initial guesses. 

 
Fig. 5 Performance function (case 1(1)) 

  

 
Fig. 6 Convergence of 1/Re (case 1(1)) 

 

 
Fig. 7 Performance function (case 1(2)) 

 

 
Fig. 8 Convergence of 1/Re (case 1(2)) 

Case 2 (Re=400) 
Observed velocity is shown in fig. 9. t∆  is set 

at 0.01 and total time step is 100. Initial guess of 
Reynolds number is set at 200(1/Re = 0.005). 
 
 

 
Fig. 9 Observed velocity (Re=400) 

 
 

 
Fig. 10 Performance function (case 2) 
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Fig. 11 Convergence of 1/Re (case 2) 

 
 

The performance function is converged to 
zero as shown in fig. 10, which means that the 
residual between computed velocity and observed 
data is zero and the Reynolds number is identified 
as plotted in fig. 11. 

As the results, the Reynolds number 
converged at correct values in both cases. 
 
 
CONCLUSIONS 

The main purpose of this study is to 
investigate efficiency of automatic differentiation 
for identification problems, using Navier-Stokes 
equations as the flow model. It can be said from 
the numerical example that sensitivity analysis is 
carried out without any implementation or 
discretization because sensitivity is automatically 
obtained from the AD. Thus development of 
applications for inverse problems can be 
significantly simplified. 

In addition to that the sensitivity of the 
implicit system is also computed correctly using 
the AD. The advantages of automatic 
differentiation are that we need not to discretize 
adjoint systems, which will be very complex, and 
that we can concentrate on solving flow fields. 

However the CPU time for the AD is much 
longer than for the adjoint approach because the 
AD requires N times loop on every operation as 
shown in list 2 if there are N indepen dent 
variables. But the hand working time for adjoint 
approach cannot be ignored. And when the 
problem is changed, adjoint system has to be re-
built and implemented. On the other hand, 
required sensitivity can be easily obtained using 
the AD by just changing the declaration for 
independent variables in program. 
 

 
REFERENCES 

1. Claus Bendtsen, Ole Stauning, FADBAD, a 
flexible C++ package for automatic 
differentiation, TECHNICAL REPORT IMM-
REP-1996-17, J. No. 1996-x5-94 August 15, 1996 
OS 

2. Andreas Griewank, David Juedes, Hristo 
Mitev, Jean Utke, Olaf Vogel and Andrea 
Walther, ADOL-C: A Package for the Automatic 
Differentiation of Algorithms Written in C/C++, 
ACMTOMS, vol. 22(2), June 1996, pp. 131-167, 
Algor. 755. 

3. Masao IRI, Automatic Differentiation in 
Sensitivity Analysis and Optimization – 
Computational complexity, guaranteed interval of 
variation and the role of adjoint systems, The 44th 
Nat. Cong. Of Theoretical & Applied Mechanics, 
1995 

4. Olivier Pironneau, Nicolas Dicesare, 
CONSISTENT APPROXIMATIONS, 
AUTOMATIC DIFFERENTIATION AND 
DOMAIN DECOMPOSITION FOR OPTIMAL 
SHAPE DESIGHN, GAKUTO International 
Series, Mathematical Sciences and Applications 
Vol. 16 (2001), Computational Methods for 
Control Application, pp. 167-178 

5. Pierre Aubert, Nicolas Di Césaré, Olivier 
Pironneau, Automatic Differentiation in C++ 
using Expression templates and Application to a 
Flow Problem, Computing and Visualization in 
Sciences, 2000 

6. Maruoka A., Kawahara M., Anju A., A 
Fractional Step Finite Element Analysis of 
Incompressible Navier-Stokes Equation, Proc. Of 
the 5th Int. Symp. on Computational Fluid 
Dynamics, Vol I pp. 19-26, Sendai 1993 

7. Y. Sakawa Y. Shindo, On global 
comvergence of an algorithm for optimal control, 
Transactions on automatic control, IEEE, AC-
25(6), pp.1149-1153, 1980 

8. A. Maruoka, M. Marin and M. Kawahara, 
Optimal control in Navier Stokes equations, 
IJCFD, 9, pp. 313-322 

9. J. Matsumoto and M. Kawahara, Shape 
Identification for Fluid-Structure Interaction 
Problem Using Improved Bubble Element, IJCFD, 
vol. 15, pp. 33-45, 2001 
 
 

<1/R
e>

<ITERATIONS> 


